
Substitution on Trajectories

Lila Kari1, Stavros Konstantinidis2, and Petr Sośık1,3

1 Department of Computer Science, The University of Western Ontario, London,
ON, Canada, N6A 5B7

{lila,sosik}@csd.uwo.ca
2 Dept. of Mathematics and Computing Science, Saint Mary’s University, Halifax,

Nova Scotia, B3H 3C3 Canada
s.konstantinidis@stmarys.ca

3 Institute of Computer Science, Silesian University, Opava, Czech Republic

Abstract. The word substitutions are binary word operations which
can be basically interpreted as a deletion followed by insertion, with some
restrictions applied. Besides being itself an interesting topic in formal
language theory, they have been naturally applied to modelling noisy
channels. We introduce the concept of substitution on trajectories which
generalizes a class of substitution operations. Within this framework, we
study their closure properties and decision questions related to language
equations. We also discuss applications of substitution on trajectories in
modelling complex channels and a cryptanalysis problem.

1 Introduction

There are two basic forms of the word substitution operation. The substitution
in α by β means to substitute certain letters of the word α by the letters of β.
The substitution in α of β means to substitute the letters of β within α by other
letters, provided that β is scattered within α. In both cases the overall length of
α is not changed. Also, we assume that a letter must not be substituted by the
same letter.

These two operations are closely related and, indeed, we prove in Section 4
that they are mutual left inverses. Their motivation comes from coding theory
where they have been used to model certain noisy channels [8]. The natural idea
is to assume that during a transfer through a noisy channel, some letters of the
transferred word can de distorted — replaced by different letters. This can be
modelled by a substitution operation extended to sets of words. This approach
also allows one to take into account that certain substitutions are more likely
than others. Hence the algebraic, closure and other properties of the substitution
operation are of interest, to study how a set of messages (=language) can change
when transferred through a noisy channel.

In this paper we generalize the idea of substitution using the syntactical
constraints — trajectories. The shuffle on trajectories as a generalization of se-
quential insertion has been studied since 1996 [16, 17]. Recently also its inverse
— the deletion on trajectories has been introduced [1, 10]. A trajectory acts as a

J. Karhumäki et al. (Eds.): Theory Is Forever (Salomaa Festschrift), LNCS 3113, pp. 145–158, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

146 Lila Kari, Stavros Konstantinidis, and Petr Sośık

syntactical condition, restricting the positions of letters within the word where
an operation places its effect. Hence the shuffle and deletion on trajectories can
be understood as meta-operations, defining a whole class of insertion/deletion
operations due to the set of trajectories at hand. This idea turned out to be
fruitful, with several interesting consequences and applications [1–4, 11, 14, 15].

We give a basic description of these operations in Section 3. Then in Section
4 we introduce on a similar basis the substitution and difference on trajectories.
From the point of view of noisy channels, the application of trajectories allows
one to restrict positions of errors within words, their frequency etc. We then
study the closure properties of substitution on trajectories in Section 5 and basic
decision questions connected with them in Section 6. In Section 7 we discuss a
few applications of the substitution on trajectories in modelling complex noisy
channels and a cryptanalysis problem. In the former case, the channels involved
permit only substitution errors. This restriction allows us to improve the time
complexity of the problem of whether a given regular language is error-detecting
with respect to a given channel [13].

2 Definitions

An alphabet is a finite and nonempty set of symbols. In the sequel we shall use
a fixed alphabet Σ. Σ is assumed to be non-singleton, if not stated otherwise.
The set of all words (over Σ) is denoted by Σ∗. This set includes the empty
word λ. The length of a word w is denoted by |w|. |w|x denotes the number of
occurrences of x within u, for w, x ∈ Σ∗.

For a nonnegative integer n and a word w, we use wn to denote the word that
consists of n concatenated copies of w. The Hamming distance H(u, v) between
two words u and v of the same length is the number of corresponding positions
in which u and v differ. For example, H(abba, aaaa) = 2.

A language L is a set of words, or equivalently a subset of Σ∗. A language
is said to be λ-free if it does not contain the empty word. For a language L, we
write Lλ to denote L ∪ {λ}. If n is a nonnegative integer, we write Ln for the
language consisting of all words of the form w1 · · ·wn such that each wi is in L.
We also write L∗ for the language L0 ∪ L1 ∪ L2 ∪ · · · and L+ for the language
L∗ − {λ}. The notation Lc represents the complement of the language L, that
is, Lc = Σ∗ − L. For the classes of regular, context-free, and context sensitive
languages, we use the notations REG, CF and CS, respectively.

A nondeterministic finite automaton with λ productions (or transitions), a
λ-NFA for short, is a quintuple A = (S, Σ, s0, F, P) such that S is the finite and
nonempty set of states, s0 is the start state, F is the set of final states, and P is
the set of productions of the form sx → t, where s and t are states in S, and x is
either a symbol in Σ or the empty word. If there is no production with x = λ, the
automaton is called an NFA. If for every two productions of the form sx1 → t1
and sx2 → t2 of an NFA we have that x1 �= x2 then the automaton is called a
DFA (deterministic finite automaton). The language accepted by the automaton
A is denoted by L(A). The size |A| of the automaton A is the number |S|+ |P |.

Substitution on Trajectories 147

A finite transducer (in standard form) is a sextuple T = (S, Σ, Σ′, s0, F, P)
such that Σ′ is the output alphabet, the components S, s0, F are as in the case
of λ-NFAs, and the set P consists of productions of the form sx → yt where s
and t are states in S, x ∈ Σ ∪ {λ} and y ∈ Σ′ ∪ {λ}. If x is nonempty for every
production then the transducer is called a gsm (generalized sequential machine).
If, in addition, y is nonempty for every production then the transducer is called
a λ-free gsm. The relation realized by the transducer T is denoted by R(T). The
size |T | of the transducer T (in standard form) is |S| + |P |. We refer the reader
to [18] for further details on automata and formal languages.

A binary word operation is a mapping ♦ : Σ∗ ×Σ∗ → 2Σ∗
, where 2Σ∗

is the set
of all subsets of Σ∗. The characteristic relation of ♦ is

C♦ = {(w, u, v) : w ∈ u♦ v}.
For any languages X and Y , we define

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

It should be noted that every subset B of Σ∗×Σ∗×Σ∗ defines a unique binary
word operation whose characteristic relation is exactly B. For an operation ♦
we define its left inverse ♦l as

w ∈ (x♦ v) iff x ∈ (w♦l v), for all v, x, w ∈ Σ∗,

and the right inverse ♦r of ♦ as

w ∈ (u♦ y) iff y ∈ (u♦r w), for all u, y, w ∈ Σ∗.

Moreover, the word operation ♦′ defined by u♦′ v = v♦ u is called reversed ♦.
It should be clear that, for every binary operation ♦, the triple (w, u, v) is in C♦
if and only if (u, w, v) is in C♦l if and only if (v, u, w) is in C♦r if and only if
(w, v, u) is in C♦′ . If x and y are symbols in {l, r,′ }, the notation ♦xy represents
the operation (♦x)y. Using the above observations, one can establish identities
between operations of the form ♦xy.

Lemma 1. (i) ♦ll = ♦rr = ♦′′ = ♦,
(ii) ♦′l = ♦r′ = ♦lr,
(iii) ♦′r = ♦l′ = ♦rl .

Bellow we list several binary word operations together with their left and right
inverses [6, 7].

Catenation: 4 u · v = {uv}, with ·l = −→rq and ·r = −→lq.
Left quotient: u −→lq v = {w} if u = vw, with −→l

lq = ·′ and −→r
lq = ·.

Right quotient: u −→rq v = {w} if u = wv, with −→l
rq = · and −→r

rq = −→′
lq.

Shuffle (or scattered insertion): u�� v = {u1v1 · · ·ukvkuk+1 | k ≥ 1,
u = u1 · · ·ukuk+1, v = v1 · · · vk}, with ��l = � and ��r = �′.

Scattered deletion: u � v = {u1 · · ·ukuk+1 | k ≥ 1, u = u1v1 · · ·ukvkuk+1, v =
v1 · · · vk}, with �l = �� and �r = �.

4 We shall also write uv for u · v.

148 Lila Kari, Stavros Konstantinidis, and Petr Sośık

3 Shuffle and Deletion on Trajectories

The above insertion and deletion operations can be naturally generalized using
the concept of trajectories. A trajectory defines an order in which the operation
is applied to the letters of its arguments. Notice that this restriction is purely
syntactical, as the content of the arguments has no influence on this order.
Formally, a trajectory is a string over the trajectory alphabet V = {0, 1}. The
following definitions are due to [1, 16, 10].

Let Σ be an alphabet and let t be a trajectory, t ∈ V ∗. Let α, β be two words
over Σ.

Definition 1. The shuffle of α with β on the trajectory t, denoted by α��t β,
is defined as follows:

α��t β = {α1β1 . . . αkβk |α=α1 . . . αk, β =β1 . . . βk, t=0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Definition 2. The deletion of β from α on trajectory t is the following binary
word operation:

α �t β = {α1 . . . αk |α=α1β1 . . . αkβk, β =β1 . . . βk, t=0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Observe that due to the above definition, if |α| �= |t| or |β| �= |t|1, then α �t

β = ∅.
A set of trajectories is any set T ⊆ V ∗. We extend the shuffle and deletion

to sets of trajectories as follows:

α��T β =
⋃

t∈T

α��t β, α �T β =
⋃

t∈T

α �t β. (2)

The operations ��T and �T generalize to languages due to (1).

Example 1. The following binary word operations can be expressed via shuffle
on trajectories using certain sets of trajectories.

1. Let T = 0∗1∗, then ��T = ·, the catenation operation, and �T = −→rq,
the right quotient.

2. For T = 1∗0∗ we have ��T = ·′, the anti-catenation, and �T = −→lq, the
left quotient.

3. Let T = {0, 1}∗, then �T = ��, the shuffle, and �T = �, the scattered
deletion.

We refer to [1, 16, 10] for further elementary results concerning shuffle and dele-
tion on trajectories.

Substitution on Trajectories 149

4 Substitution on Trajectories

Based on the previously studied concepts of the insertion and deletion on tra-
jectories, we consider a generalization of three natural binary word operations
which are used to model certain noisy channels [8]. Generally, channel [13] is a
binary relation γ ⊆ Σ∗×Σ∗ such that (u, u) is in γ for every word u in the input
domain of γ – this domain is the set {u | (u, v) ∈ γ for some word v}. The fact
that (u, v) is in γ means that the word v can be received from u via the channel
γ. In [8], certain channels with insertion, deletion and substitution errors are
characterized via word operations. For instance, the channel with exactly m in-
sertion errors is the set of all pairs (u, v) such that v ∈ u��Σm, and analogously
for deletion errors. The following definitions allow one to characterize channels
with substitution errors.

Definition 3. If u, v ∈ Σ∗ then we define the substitution in u by v as

u � v={u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u= u1a1u2a2 . . . ukakuk+1, v= v1 . . . vk,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

The case k = 0 corresponds to v = λ when no substitution is performed.

Definition 4. If u, v ∈ Σ∗ then we define the substitution in u of v as

u� v={u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u= u1v1u2v2 . . . ukvkuk+1, v= v1 . . . vk,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

Definition 5. Let u, v ∈ Σ∗, |u| = |v|, let H(u, v) be the Hamming distance of
u and v. We define

u � v={v1v2 . . . vk | k = H(u, v), u = u1a1 . . . ukakuk+1, v = u1v1 . . . ukvkuk+1,

ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k}.

The above definitions are due to [8], where it is also shown that the left- and the
right-inverse of � are � and �, respectively. Given two binary word operations
♦1, ♦2, their composition (♦1 ♦2) is defined as

w ∈ u(♦1 ♦2)v ⇐⇒ w ∈ (u♦1 v1)♦2 v2, v = v1v2,

for all u, v, w ∈ Σ∗. Then it is among others shown that:

(i) The channel with at most m substitution and insertion errors is equal to
{(u, v) | v ∈ u(���)(Σ0 ∪ · · · ∪ Σm)}.

(i) The channel with at most m substitution and deletion errors is equal to
{(u, v) | v ∈ u(��)(Σ0 ∪ · · · ∪ Σm)}.

Moreover, further consequences including composition of channels, inversion of
channels etc. are derived. The above substitution operations can be generalized
using trajectories as follows.

150 Lila Kari, Stavros Konstantinidis, and Petr Sośık

Definition 6. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u by v on trajectory t as

u �t v = {u1v1u2v2 . . . ukvkuk+1 | k ≥ 0, u = u1a1 . . . ukakuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

Definition 7. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the substitution
in u of v on trajectory t as

u�t v = {u1a1u2a2 . . . ukakuk+1 | k ≥ 0, u = u1v1 . . . ukvkuk+1, v = v1 . . . vk,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

Definition 8. For a trajectory t ∈ V ∗ and u, v ∈ Σ∗ we define the right differ-
ence of u and v on trajectory t as

u �t v = {v1v2 . . . vk | k ≥ 0, u = u1a1 . . . ukakuk+1, v = u1v1 . . . ukvkuk+1,

t = 0j110j21 . . . 0jk10jk+1 , ai, vi ∈ Σ, 1 ≤ i ≤ k, ai �= vi, ∀i, 1 ≤ i ≤ k,

ji = |ui|, 1 ≤ i ≤ k + 1}.

These operations can be generalized to sets of trajectories in the natural way:

u �T v =
⋃

t∈T

u �t v, u�T v =
⋃

t∈T

u�t v and u �T v =
⋃

t∈T

u �t v.

Example 2. Let T = V ∗, i.e. the set T contains all the possible trajectories.
Then �T =�, �T = � and �T = �.

One can observe that similarly as in [8], the above defined substitution on trajec-
tories could be used to characterize channels where errors occur in certain parts
of words only, or with a certain frequency and so on. Due to the fact that the
trajectory is a syntactic restriction, only such channels can be modelled where
the occurrence of errors may depend on the length of the transferred message,
but not on its content. In the sequel we study various properties of the above
defined substitution operations.

Lemma 2. For a set of trajectories T and words u, v ∈ Σ∗, the following
holds:

(i) �l
T = �T and �r

T = �T ,

(ii) �l
T = �T and �r

T = �′
T ,

(iii) �l
T = �′

T and �r
T = �T .

Proof. (i) Consider the characteristic relation C�t of the operation �t . Observe
that (w, u, v) ∈ C�t iff (u, w, v) ∈ C�l

t
iff (v, u, w) ∈ C�r

t
. Then the statements

Substitution on Trajectories 151

�l
t = �t and �r

t = �t, t ∈ T, follow directly by careful reading the definitions
of �t, �t and �t. Now observe that

u �l
T v =

⋃

t∈T

u �l
t v =

⋃

t∈T

u�t v = u�T v.

The proof for �r
T is analogous.

(ii) Due to Lemma 1, �l
T = �T implies �l

T = �T and �r
T = �T implies

�r
T = �lr

T = �r′
T = �′

T .

(iii) Similarly, �r
T = �T implies �r

T = �T , and consequently �l
T = �rl

T

= �l′
T = �′

T . ��

5 Closure Properties

Before addressing the closure properties of substitution, we show first that any
(not necessarily recursively enumerable) language over a two letter alphabet can
be obtained as a result of substitution.

Lemma 3. For an arbitrary language L ⊆ {a, b}∗ there exists a set of trajecto-
ries T such that

(i) L = a∗ �T b∗,
(ii) L = a∗ �T a∗.

Proof. Let T = φ(L), φ : {a, b}∗ −→ V ∗ being a coding morphism such that
φ(a) = 0, φ(b) = 1. The statements follow easily by definition. ��

Similarly as in the case of shuffle and deletion on trajectories [1, 16, 10], the
substitution on trajectories can be characterized by simpler language operations.

Lemma 4. Let ♦T be any of the operations �T , �T , �T . Then there exists a
finite substitution h1, morphisms h2, g and a regular language R such that for
all languages L1, L2 ⊆ Σ∗, and for all sets of trajectories T ⊆ V ∗,

L1 ♦T L2 = g((h1(L1)�� h2(L2)�� T) ∩ R). (3)

Proof. Let Σi = {ai | a ∈ Σ}, for i = 1, 2, 3, be copies of Σ such that Σ, Σ1, Σ2,
Σ3 and V are pairwise disjoint alphabets. For a letter a ∈ Σ, we denote by ai

the corresponding letter from Σi, i = 1, 2, 3.
Let further h1 : Σ −→ (Σ1∪Σ3) be a finite substitution and let h2 : Σ −→ Σ2

and g : (Σ1 ∪ Σ2 ∪ Σ3 ∪ V) −→ Σ be morphisms.

(i) If ♦T =�T , then define h1(a) = {a1, a3}, h2(a) = a2 for each a ∈ Σ. Let

R = (Σ1 · {0} ∪ {a3b21 | a, b ∈ Σ, a �= b})∗.
Let further g(a1) = a, g(a2) = a for all a1 ∈ Σ1, a2 ∈ Σ2, and g(x) = λ for
all x ∈ Σ3 ∪ V. Then one can easily verify that (3) holds true.

152 Lila Kari, Stavros Konstantinidis, and Petr Sośık

(ii) If ♦T = �T , then let h1(a) = {a1} ∪ {a3} · Σ1, h2(a) = a2 for each a ∈ Σ.
Let further

R = (Σ1 · {0} ∪ {a3a2b11 | a, b ∈ Σ, a �= b})∗,
and g(a1) = a for all a1 ∈ Σ1, g(x) = λ for all x ∈ Σ2 ∪ Σ3 ∪ V.

(iii) If ♦T = �T , then define h1(a) = a1, h2(a) = {a2, a3} for each a ∈ Σ. Let

R = ({a1a20 | a ∈ Σ} ∪ {a1b31 | a, b ∈ Σ, a �= b})∗,
and g(a3) = a for all a3 ∈ Σ3, g(x) = λ for all x ∈ Σ1 ∪ Σ2 ∪ V.

��
The previous lemmata allow us to make statements about closure properties

of the substitution operations now.

Theorem 1. For a set of trajectories T ⊆ V ∗, the following three statements
are equivalent.

(i) T is a regular language.
(ii) L1 �T L2 is a regular language for all L1, L2 ⊆ Σ∗.
(iii) L1 �T L2 is a regular language for all L1, L2 ⊆ Σ∗.

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow by Lemma 4 due to the
closure of the class of regular languages with respect to shuffle, finite substitution,
morphisms and intersection.

To show the implication (ii) ⇒ (i), assume that L1 �T L2 is a regular lan-
guage for all L1, L2 ⊆ Σ∗. Let a, b ∈ Σ without loss of generality, then also
L = a∗ �T b∗ is a regular language, and T = φ−1(L), φ being the coding defined
in the proof of Lemma 3. Consequently, T is regular. The implication (iii) ⇒ (i)
can be shown analogously. ��
Theorem 2. For all regular set of trajectories T ⊆ V ∗ and regular languages
L1, L2 ⊆ Σ∗, L1 �T L2 is a regular language.

Proof. The same as the proof of Theorem 1, (i) ⇒ (ii). ��
Theorem 3. Let ♦T be any of the operations �T , �T , �T .

(i) Let any two of the languages L1, L2, T be regular and the third one be
context-free. Then L1 ♦T L2 is a context-free language.

(ii) Let any two of the languages L1, L2, T be context-free and the third one be
regular. Then L1 ♦T L2 is a non-context-free language for some triples (L1,
L2, T).

Proof. (i) Follows by Lemmata 4, and by closure of the class of context-free
languages with respect to finite substitution, shuffle, morphisms and inter-
section with regular languages.

(ii) Consider the alphabet Σ = {a, b, c, d}.
1. Let ♦T =�T .

Substitution on Trajectories 153

(1) Consider L1 = {andb2n |n > 0}, L2 = {amcm |m > 0} and T = V ∗,
then (L1 �T L2) ∩ a∗da∗c∗ = andancn.

(2) Consider L1 = {anb2n |n > 0}, L2 = c+ and T = {02m1m |m > 0},
then L1 �T L2 = anbncn.

(3) Consider L1 = a+, L2 = {bncn |n > 0} and T = {0m12m |m > 0},
then L1 �T L2 = anbncn.

2. Let ♦T = �T . Consider:
(1) L1 = {anbakbal | k + l + 1 = 2n > 0}, L2 = {ambam+1 |m > 0} and

T = 0+1+,
(2) L1 = {anbna∗ |n > 0}, L2 = a+ and T = 02m+11m,
(3) L1 = a+ba+, L2 = {anban |n > 0} and T = {0m12m+1 |m > 0},
then in all three cases (L1 �T L2) ∩ a∗b∗ab∗ = anbnabn.

3. Let ♦T = �T . Consider:
(1) L1 = {c2mdcma∗ |m > 0}, L2 = {anbnda∗ |n > 0} and T = V +,
(2) L1 ={bnandb+a∗ |n > 0}, L2 =a+b+da+ and T ={12m01m0∗ |m >

0},
(3) L1 = c+dc+a∗, L2 = {anbnda∗ |n > 0} and T = {12m01m0∗ |m >

0},
then in all three cases (L1 �T L2) ∩ {a, b}∗ = anbnan.

In all the above cases we have shown that L1 ♦T L2 is a non-context-free
language.

��

6 Decision Problems

In this section we study three elementary types of decision problems for language
equations of the form L1 ♦T L2 = R, where ♦T is one of the operations �T , �T ,
�T . These problems, studied already for various binary word operations in [7,
6, 1, 10, 5] and others, are stated as follows. First, given L1, L2 and R, one asks
whether the above equation holds true. Second, the existence of a solution L1

to the equation is questioned, when L1 is unknown (the left operand problem).
Third, the same problem is stated for the right operand L2. All these problems
have their variants when one of L1, L2 (the unknown language in the case of the
operand problems) consists of a single word.

We focus now on the case when L1, L2 and T are all regular languages.
Then L1 ♦T L2 is also a regular language by Theorems 1, 2, ♦T being any of the
operations �T , �T , �T . Immediately we obtain the following result.

Theorem 4. The following problems are both decidable if the operation ♦T is
one of �T , �T , �T , T being a regular set of trajectories:

(i) For given regular languages L1, L2, R, is L1 ♦T L2 = R?
(ii) For given regular languages L1, R and a word w ∈ Σ∗, is L1 ♦T w = R?

Also the decidability of the left and the right operand problems for languages
are straightforward consequences of the results in Section 5 and some previously
known facts about language equations [7].

154 Lila Kari, Stavros Konstantinidis, and Petr Sośık

Theorem 5. Let ♦T be one of the operations �T , �T , �T . The problem “Does
there exist a solution X to the equation X ♦T L = R?” (left-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Due to [7], if a solution to the equation X ♦T L = R exists, then also
Xmax = (Rc ♦l

T L)c is also a solution, ♦T being an invertible binary word oper-
ation. In fact, Xmax is the maximum (with respect to the subset relation) of all
the sets X such that X ♦T L ⊆ R. We can conclude that a solution X exists iff

(Rc ♦l
T L)c ♦T L = R. (4)

holds. Observe that if ♦T is one of �T , �T , �T , then ♦l
T is �T , �T or �′

T ,
respectively, by Lemma 2. Hence the left side of the equation (4) represents
an effectively constructible regular language by Theorems 1, 2. Consequently,
the validity of (4) is decidable and moreover the maximal solution Xmax =
(Rc ♦l

T L)c can be effectively found if one exists. ��
Theorem 6. Let ♦T be one of the operations �T , �T , �T . The problem “Does
there exist a solution X to the equation L♦T X = R?” (right-operand problem)
is decidable for regular languages L, R and a regular set of trajectories T.

Proof. Similarly as in the proof of Theorem 5, a maximal solution to the equation
L♦T X = R is Xmax = (L♦r

T Rc)c for a binary word operation ♦T , see [7].
Hence a solution X exists iff

L♦T (L♦r
T Rc)c = R (5)

By Lemma 2, if ♦T is one of �T , �T , �T , then ♦r
T is �T , �′

T or �T , respectively.
Again the validity of (5) is effectively decidable by Theorems 1, 2, and, moreover,
an eventual maximal solution Xmax = (L♦r

T Rc)c can be effectively found. ��
The situation is a bit different in the case when the existence of a singleton

solution to the left or the right operand problem is questioned. Another proof
technique takes place.

Theorem 7. Let ♦T be one of the operations �T , �T , �T . The problem “Does
there exist a word w such that w♦T L = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume that ♦T is one of �T , �T , �T . Observe first that if y ∈ w♦T x
for some w, x, y ∈ Σ∗, then |y| ≤ |w|. Therefore, if R is infinite, then there
cannot exist a solution w of a finite length satisfying w♦T L = R. Hence for an
infinite R the problem is trivial.

Assume now that R is finite. As shown in [7], the regular set Xmax =
(Rc ♦l

T L)c is the maximal set with the property X ♦T L ⊆ R. Hence w is a
solution of w♦T L = R iff

(i) w♦T L ⊆ R, i.e. w ∈ Xmax, and
(ii) w♦T L �⊂ R.

Substitution on Trajectories 155

Moreover, (ii) is satisfied iff w♦T L �⊆ R1 for all R1 ⊂ R, and hence w �∈
(Rc

1 ♦l
T L)c. Hence we can conclude that the set S of all singleton solutions to

the equation w♦T L = R can be expressed as

S = (Rc ♦l
T L)c −

⋃

R1⊂R

(Rc
1 ♦l

T L)c.

Since we assume that R is finite, the set S is regular and effectively constructible
by Lemma 2, Theorems 1, 2 and the closure of REG under finite union and
complement. Hence it is also decidable whether S is empty or not, and eventually
all its elements can be effectively listed. ��
Theorem 8. Let ♦T be one of the operations �T , �T , �T . The problem “Does
there exist a word w such that L♦T w = R?” is decidable for regular languages
L, R and a regular set of trajectories T.

Proof. Assume first that ♦T is one of �T , �T . Observe that if y ∈ x♦T w for
some w, x, y ∈ Σ∗, then |y| ≥ |w|. Therefore, if a solution w to the equation
L♦T w = R exists, then |w| ≤ k, where k = min{|y| | y ∈ R}. Hence, to
verify whether a solution exists or not, it suffices to test all the words from
Σ0 ∪ Σ1 ∪ · · · ∪ Σk.

Focus now on the operation �T . Analogously to the case of Theorem 7, we
can deduce that there is no word w satisfying L �T w = R, if R is infinite.
Furthermore, the set Xmax = (L �r

T Rc)c = (L �T Rc)c is the maximal set with
the property L �T X ⊆ R. The same arguments as in the proof of Theorem 7
allow one to express the set of all singleton solutions as

S = (L �T Rc)c −
⋃

R1⊂R

(L �T Rc
1)

c.

For a finite R, the set S is regular and effectively constructible, hence we can
decide whether it contains at least one solution. ��

We add that in the above cases of the left and the right operand problems,
if there exists a solution, then at least one can be effectively found. Moreover, in
the case of their singleton variants, all the singleton solutions can be effectively
enumerated.

7 Applications

In this section we discuss a few applications of the substitution-on-trajectories
operation in modelling certain noisy channels and a cryptanalysis problem. In
the former case, we revisit a decidability question involving the property of error-
detection.

For positive integers m and l, with m < l, consider the SID channel [12]
that permits at most m substitution errors in any l (or less) consecutive symbols
of any input message. Using the operation �T , this channel is defined as the

156 Lila Kari, Stavros Konstantinidis, and Petr Sośık

set of pairs of words (u, v) such that u is in v �T Σ∗, where T is the set of all
trajectories t such that, for any subword s of t, if |s| ≤ l then |s|1 ≤ m. In general,
following the notation of [8], for any trajectory set T we shall denote by [�T Σ∗]
the channel {(u, v) | v ∈ u �T Σ∗}. In the context of noisy channels, the concept
of error-detection is fundamental [13]. A language L is called error-detecting for
a channel γ, if γ cannot transform a word in Lλ to another word in Lλ; that is,
if u, v ∈ Lλ and (u, v) ∈ γ then u = v. Here Lλ is the language L ∪ {λ}. The
empty word in this definition is needed in case the channel permits symbols to
be inserted into, or deleted from, messages – see [13] for details. In our case,
where only substitution errors are permitted, the above definition remains valid
if we replace Lλ with L.

In [13] it is shown that, given a rational relation γ and a regular language
L, we can decide in polynomial time whether L is error-detecting for γ. Here we
take advantage of the fact that the channels [�T Σ∗] permit only substitution
errors and improve the time complexity of the above result.

Theorem 9. The following problem is decidable in time O(|A|2|T |).
Input: NFA A over Σ and NFA T over {0, 1}.
Output: Y/N, depending on whether L(A) is error-detecting for [�T Σ∗].

Proof. In [9] it is shown that given an NFA A, one can construct the NFA Aσ,
in time O(|A|2), such that the alphabet of Aσ is E = Σ × Σ and the language
accepted by Aσ consists of all the words of the form (x1, y1) · · · (xn, yn), with each
(xi, yi) ∈ E, such that x1 · · ·xn �= y1 · · · yn and the words x1 · · ·xn and y1 · · · yn

are in L(A). Let φ be the morphism of E into {0, 1} such that φ(x, y) = 0 iff
x = y. One can verify that L(A) is error-detecting for [�T Σ∗] iff the language
φ(L(Aσ))∩L(T) is empty. Using this observation, the required algorithm consists
of the following steps: (i) Construct the NFA Aσ from A. (ii) Construct the NFA
φ(Aσ) by simply replacing each transition s(x, y) → t of Ac with sφ(x, y) → t.
(iii) Use a product construction on φ(Aσ) and T to obtain an NFA B accepting
φ(L(Aσ))∩L(T). (iv) Perform a depth first search algorithm on the graph of B
to test whether there is a path from the start state to a final state. ��

We close this section with a cryptanalysis application of the operation �T .
Let V be a set of candidate binary messages (words over {0, 1}) and let K be a
set of possible binary keys. An unknown message v in V is encrypted as v ⊕ t,
where t is an unknown key in K, and ⊕ is the exclusive-OR logic operation.
Let e be an observed encrypted message and let T be a set of possible guesses
for t, with T ⊆ K. We want to find the subset X of V for which X ⊕ T = e,
that is, the possible original messages that can be encrypted as e using the keys
we have guessed in T . In general T can be infinite and given, for instance, by a
regular expression describing the possible pattern of the key. We can model this
problem using the following observation whose proof is based on the definitions
of the operations �T and ⊕, and is left to the reader.

Substitution on Trajectories 157

Lemma 5. For every word v and trajectory t, v �T Σ∗ = {v ⊕ t}.

By the above lemma, we have that the equation X ⊕ T = e is equivalent
to X �T Σ∗ = e. By Theorem 5, we can decide whether there is a solution for
this equation and, in this case, find the maximal solution Xmax. In particular,
Xmax = (ec�T Σ∗)c. Hence, one needs to compute the set M∩Xmax. Most likely,
for a general T , this problem is intractable. On the other hand, this method
provides an alternate way to approach the problem.

References

1. M. Domaratzki, Deletion Along Trajectories. Tech. report 464-2003, School of Com-
puting, Queen’s University, 2003, and accepted for publication.

2. M. Domaratzki, Splicing on Routes versus Shuffle and Deletion Along Trajectories.
Tech. report 2003-471, School of Computing, Queen’s University, 2003.

3. M. Domaratzki, Decidability of Trajectory-Based Equations. Tech. report 2003-472,
School of Computing, Queen’s University, 2003.

4. M. Domaratzki, A. Mateescu, K. Salomaa, S. Yu, Deletion on Trajectories and
Commutative Closure. In T. Harju and J. Karhumaki, eds., WORDS’03: 4th In-
ternational Conference on Combinatorics on Words. TUCS General Publication
No. 27, Aug. 2003, 309–319.

5. M. Ito, L. Kari, G. Thierrin, Shuffle and scattered deletion closure of lan-
guages.Theoretical Computer Science 245 (2000), 115–133.

6. L. Kari, On insertion and deletion in formal languages, PhD thesis, University of
Turku, Finland, 1991.

7. L. Kari, On language equations with invertible operations, Theoretical Computer
Science 132 (1994), 129–150.

8. L. Kari, S. Konstantinidis, Language equations, maximality and error detection.
Submitted.

9. L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu, Finite-state error/edit-
systems and difference measures for languages and words. Dept. of Math. and
Computing Sci. Tech. Report No. 2003-01, Saint Mary’s University, Canada, 2003.

10. L. Kari, P. Sośık, Language deletion on trajectories. Dept. of Computer Science
technical report No. 606, University of Western Ontario, London, 2003, and sub-
mitted for publication.

11. L. Kari, S. Konstantinidis, P. Sośık, On Properties of Bond-Free DNA Languages.
Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario, 2003,
and submitted for publication.

12. S. Konstantinidis, An algebra of discrete channels that involve combinations of
three basic error types. Information and Computation 167 (2001), 120–131.

13. S. Konstantinidis, Transducers and the properties of error detection, error correc-
tion and finite-delay decodability. J. Universal Comp. Science 8 (2002), 278–291.

14. C. Martin-Vı́de, A. Mateescu, G. Rozenberg, A. Salomaa, Contexts on Trajectories,
TUCS Technical Report No. 214, Turku Centre for Computer Science, 1998.

15. A. Mateescu, A. Salomaa, Nondeterministic trajectories. Formal and Natural Com-
puting: Essays Dedicated to Grzegorz Rozenberg, LNCS 2300 (2002), 96-106.

16. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic con-
straints, Theoretical Computer Science 197 (1998), 1–56.

158 Lila Kari, Stavros Konstantinidis, and Petr Sośık

17. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on Trajectories: Syntactic Con-
straints, TUCS Technical Report No. 41, Turku Centre for Computer Science,
1996.

18. G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

	1 Introduction
	2 Definitions
	3 Shuffle and Deletion on Trajectories
	4 Substitution on Trajectories
	5 Closure Properties
	6 Decision Problems
	7 Applications
	References

